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A dominant aspect of granular flows is flow in thin surface layers. While an
understanding of the dynamics of dry granular surface flow has begun to emerge,
the case of flow when air is completely replaced by a liquid is largely unexplored.
Experiments were performed using particle tracking velocimetry (PTV) in a quasi-
two-dimensional rotating tumbler to measure the velocity field within the flowing
layer of monodisperse spherical particles fully submerged in liquids, a granular slurry,
for a range of Froude numbers, bead sizes, fluid densities and fluid viscosities. The
thickness of the flowing layer and the angle of repose with a liquid interstitial fluid
are generally larger than for the dry system under similar conditions, although the
shear rate is generally smaller. The experimental measurements of shear rate match
the theoretical predictions (dependent on the particle size, dynamic angle of repose,
and static angle of repose) independent of the interstitial fluid. Furthermore, the
velocity profiles for larger beads collapse independent of the interstitial fluid, while
for smaller beads these profiles collapse on two distinct curves when using a scaling
based on mass balance. However, a normalization based on the velocity of beads
at the surface causes a collapse to a nearly linear velocity profile except where the
velocity approaches zero logarithmically near the fixed bed, regardless of interstitial
fluid. Likewise, the scaled number density profiles collapse, regardless of the interstitial
fluid. The similarity in the flows of dry granular materials and granular materials
submerged in liquids indicates that the physics of the flow is not strongly altered by
the interstitial fluid.

1. Introduction
A fundamental understanding of granular flows is of critical importance for a

number of industries – pharmaceuticals, polymers, ceramics, food processing, and
others (Heywood 1999) – as well as for predictive geology. Until recently, only a
relatively small number of attempts had been made to understand the flow, handling,
and segregation of granular materials (Lacey 1954; Williams 1963; Bridgwater 1976).
In the last few years, however, the number of papers published in this field has
increased and considerable progress has been made (for summaries of recent work,
see Duran 2000; Ristow 2000). Despite these efforts, our understanding of granular
flow is still far less advanced than that of fluid flows, and a set of accepted general
governing flow equations has not yet been developed for granular materials.
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24 N. Jain, J. M. Ottino and R. M. Lueptow

The focus of this paper is to understand the effect of the interstitial fluid (air or
liquid) on the flow of non-cohesive beads. We refer to the two situations as dry,
where the interstitial fluid is air, and slurry, where the interstitial fluid is water or a
glycerine–water mixture. The bulk of the granular flow dynamics literature addresses
the case of dry materials, although there are some exceptions. There have been
studies focusing on the effect of humidity or a fluid coating the particles, where the
fraction of liquid in the system is less than a few per cent (Samadani & Kudrolli
2001; Li & McCarthy 2003; Tegzes, Vicsek & Schiffer 2003). These systems consist
of three phases (granular solid, small quantities of a liquid, and a gas). As a result,
the key physics is related to surface tension causing the granular particles to clump
together. By contrast our system is a two-phase system (granular solid and a single
fluid, either liquid or gas) and surface tension plays no role at all in our experiments,
since there are no gas–liquid interfaces. Other studies have considered the formation
of bands of particles in a horizontal rotating drum filled with a dilute suspension of
particles (Boote & Thomas 1999; Tirumkudulu, Tripathi & Acrivos 1999) and the
effect of an interstitial liquid on heaping (Medved, Jaeger & Nagel 2001). Finally, in
the most closely related work to this study axial segregation of a slurry of beads of
differing sizes in a half-filled long rotating drum was recently discovered (Jain et al.
2001; Fiedor & Ottino 2003). The rate of segregation is significantly faster for the
case of a liquid interstitial fluid than for a gas.

Here, we study the granular flow in a quasi two-dimensional rotating tumbler half-
filled with granular material and rotated about its axis, as shown in figure 1. This
system has become a prototypical device to study mixing and segregation of granular
matter. The simplicity of the system allows investigation of the dependence of the
granular dynamics on the density and viscosity of the interstitial fluid.

When a horizontal circular tumbler partially filled with granular material is rotated
about its axis, the material rotates as a solid body until it reaches its dynamic angle
of repose. The flow inside a rotating tumbler can be divided into two parts: a bulk
solid-body rotation undergoing a slow plastic deformation (Komatsu et al. 2001);
and a thin flowing layer at the angled free surface. Depending on the speed of
rotation, different flow regimes occur: avalanching, rolling or cascading; cataracting;
and centrifuging (Henein, Brimacomble & Watkinson 1983; Rajchenbach 1990). This
paper focuses exclusively on the rolling regime in which the flow is continuous and
the upper surface of the flowing layer is nearly flat.

Most previous work on flow dynamics and segregation of granular materials in a
rotating tumbler has been limited to dry granular materials. Nakagawa et al. (1993)
conducted a detailed experimental study measuring the velocity of dry granular
material in the flowing layer of a rotating tumbler using magnetic resonance imaging
(MRI). They measured granular flow for particles of a single size and density at
different angular velocities and found: (i) the velocity profile is approximately linear
except near the interface between the layer and the bed; (ii) the velocity varies along
the length of the layer with a maximum near the centre of the layer; and (iii) the
number density of particles decreases across the flowing layer from the bed to the
free surface. The granular flow dynamics in a quasi-two-dimensional rotating tumbler
have also been measured using particle tracking velocimetry and high-speed digital
photography. Jain, Ottino & Lueptow (2002) performed these measurements for a
broad range of angular velocities, bead sizes, bead densities, and positions along
the flowing layer. The results confirmed Nakagawa et al.’s findings and provided
additional details: (i) the velocity profile is nearly linear in the upper three-quarters
of the flowing layer, but the profile depends logarithmically on depth close to the
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interface between the layer and ‘fixed’ bed; (ii) velocity profiles corresponding to
different positions along the layer can be scaled using mass balance arguments; (iii)
number density decreases dramatically in the upper half of the flowing layer, but is
nearly uniform in the lower half of the layer. Furthermore, the velocity profiles were
found to scale best with the surface velocity, and the number density profiles scaled
quite well using geometric scaling rules. Bonamy, Daviaud & Laurent (2002) also
found that the velocity profile is linear in the upper part of the flowing layer and
logarithmically decreases close to the fixed bed for 3 mm steel beads.

Using conventional photography, Orpe & Khakhar (2001) measured the free surface
profile and flowing layer thickness of dry beads in a quasi-two-dimensional circular
tumbler at different particle diameter to tumbler radius ratios (d/L) and Froude
numbers, Fr =ω2L/g, where ω is the angular velocity of the tumbler and g is the
acceleration due to gravity. They found that the scaled layer thickness (δ/L) increases
with increasing Froude number or increasing d/L. In addition, they found that the
scaled layer thickness and shape of the surface profiles are nearly identical when
the Froude number and d/L are held constant, independent of the type of granular
material. Ottino & Khakhar (2002) summarized the findings of these and other studies
so that they can be applied to the design and scale up for problems of industrial
importance.

With a few exceptions (e.g. Schleier-Smith & Stone 2001) there seems to be little
fundamental work on the physics of granular flow under slurry conditions. In fact,
the only related study of granular flow driven by tumbling with a liquid interstitial
fluid seems to be our recent studies of granular segregation of glass particles of two
different sizes in water-filled quasi-two-dimensional and three-dimensional circular
tumblers (Jain et al. 2001; Fiedor & Ottino 2003). Both axial segregation (banding)
and radial segregation occur in granular slurries, although the rate of formation of
bands is considerably faster for the slurry condition compared to the dry condition.
Theoretical understanding may not be completely lacking though. There is, in fact,
more theoretical guidance available than can be gathered from the classical continuum
descriptions of granular flow that go back to the work of Haff (1983) and others.
In fact, recent work in suspensions of non-neutrally buoyant particles may yield
considerable insight into this particular flow (Carpen & Brady 2002). As we shall
show, a simple model based on a stress model assuming additivity of Coulombic and
Bagnold stresses (Khakhar, Orpe & Ottino 2001a) captures some of the essential
aspects of the results.

It should be noted also that although most studies of dry granular flow in a tumbler
use the Froude number as the key dimensionless parameter, Klein & White (1988)
proposed a dimensionless number of the form g[(ρp − ρ)/µω3]1/2 (referred to as the
KW number later in this paper), where µ and ρ are the viscosity and density of the
interstitial fluid, and ρp is the density of the granules. This dimensionless number has
the advantage of including the nature of the interstitial fluid.

The focus of the present work is to measure quantitative differences in the granular
flow dynamics for monodisperse dry and slurry systems. An estimate of the stresses
involved is as follows. The typical stresses due to interparticle collisions are τc =
ρpd2γ̇ 2 (Bagnold 1954), whereas the stresses due to lubrication forces are τµ = µγ̇ d/ε

(Coussot & Ancey 1999), where γ̇ is the shear rate and ε is the surface roughness. The
ratio of interparticle collisional stresses to the lubrication stresses is the Bagnold num-
ber, Ba = τc/τµ = γ̇ ρp dε/µ. For steel beads (d ∼ 3mm, ρp ∼ 7.5 g cm−3, ε ∼ 0.1 µm)
tumbled in the rolling regime, the Bagnold number ranges from 100 for the dry
case (air) to 10−2 for the slurry case (63% glycerine–water mixture, µ = 10.15 cP).
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Figure 1. The rotating tumbler geometry with the coordinate system and the system
parameters. Dotted curves indicate the paths of particles.

Based on this simple analysis, we might expect significant differences between the
flow dynamics of dry material and a slurry.

This paper describes the dynamics of the flowing layer of a quasi-two-dimensional
rotating drum for slurry systems with either water or mixtures of glycerine and
water as the interstitial fluid. Using particle tracking velocimetry (PTV), we determine
the profiles of streamwise velocity, granular temperature, number density and mass
flux for flows in which the size of the granular particles, the rotational speed and
the viscosity and density of interstitial fluid are varied. Our intent is to understand
the relationship between particle interactions, as altered by the interstitial fluid, and
macroscopic properties of the flowing layer. Where possible, results are compared
with existing theory, although the effect of the interstitial fluid has not been explored
in previous studies.

2. Experimental procedure
The circular tumbler used in the quasi-two-dimensional experiments is shown

schematically in figure 1. The diameter of the tumbler (2L) was 28 cm. The back
surface of the tumbler was a black-anodized aluminium plate to minimize electrostatic
effects on the particles and optical noise effects in the digital images. The front
faceplate was clear acrylic to permit optical access. A small hole in the front faceplate
near the edge of the tumbler permitted liquid to be injected using a syringe, while
another hole served as a vent. After filling the tumbler with the appropriate interstitial
fluid, the holes were sealed. A stepper motor and micro series driver combination
(SLO-SYN R©) was used to rotate the tumbler at rotational speeds (ω) between 0.052
and 0.168 rad s−1, corresponding to an order of magnitude change in Froude number,
0.39 × 10−4 � Fr � 4.0 × 10−4. Details of the experimental conditions are provided in
table 1.

Spherical chrome steel beads (Fox Industries) with diameters (d) of 1.2 mm (1.16 ±
0.08), 2 mm (2.00 ± 0.04), and 3mm (3.05 ± 0.06) were used for the experiments.
The ratio between the tumbler radius and bead diameter varied from 47 to 117.
Unlike our previous dry system measurements (Jain et al. 2002), glass beads were not
used because the refractive index of glass is very close to that of water, making the
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Kinematic
Viscosity viscosity d ω δ0 γ̇

Fluid (Pa s) (m2 s−1) (mm) (rad s−1) Fr × 104 KW ×10−4 (mm) δ0/d βm usurface (m s−1) (s−1)

Air 1.85 × 10−5 1.56 × 10−5 1.16 0.052 0.39 1664 8.4 7.2 29.9 0.24 25.4
Air 1.85 × 10−5 1.56 × 10−5 1.16 0.094 1.26 685 11.2 9.7 32.6 0.62 48.2
Air 1.85 × 10−5 1.56 × 10−5 1.16 0.168 4.03 287 14 12.1 34.1 0.77 56.1

Air 1.85 × 10−5 1.56 × 10−5 2 0.052 0.39 1664 12.6 6.3 26.6 0.17 11.8
Air 1.85 × 10−5 1.56 × 10−5 2 0.094 1.26 685 14 7.0 28.8 0.27 19.5
Air 1.85 × 10−5 1.56 × 10−5 2 0.168 4.03 287 16.1 8.1 30.3 0.50 30.9

Air 1.85 × 10−5 1.56 × 10−5 3 0.052 0.39 1664 15.4 5.1 24.6 0.11 6.7
Air 1.85 × 10−5 1.56 × 10−5 3 0.094 1.26 685 18.9 6.3 26.6 0.14 7.6
Air 1.85 × 10−5 1.56 × 10−5 3 0.168 4.03 287 19.6 6.5 27.5 0.24 12.5

Water 1.00 × 10−3 1.00 × 10−6 1.16 0.052 0.39 211 9.8 8.4 33.0 0.19 19.8
Water 1.00 × 10−3 1.00 × 10−6 1.16 0.094 1.26 87 11.9 10.3 34.0 0.34 27.6
Water 1.00 × 10−3 1.00 × 10−6 1.16 0.168 4.03 36 12.6 10.9 35.8 0.44 35.9

Water 1.00 × 10−3 1.00 × 10−6 2 0.052 0.39 211 14 7.0 30.5 0.12 7.7
Water 1.00 × 10−3 1.00 × 10−6 2 0.094 1.26 87 16.1 8.1 31.7 0.21 12.0
Water 1.00 × 10−3 1.00 × 10−6 2 0.168 4.03 36 18.2 9.1 33.0 0.35 20.7

Water 1.00 × 10−3 1.00 × 10−6 3 0.052 0.39 211 14.7 4.9 29.7 0.13 7.7
Water 1.00 × 10−3 1.00 × 10−6 3 0.094 1.26 87 16.8 5.6 31.0 0.20 10.5
Water 1.00 × 10−3 1.00 × 10−6 3 0.168 4.03 36 19.6 6.5 31.7 0.28 13.4

Glycerine 2.89 × 10−3 2.65 × 10−6 3 0.052 0.39 123 15.4 5.1 29.7 0.12 7.5
Glycerine 2.89 × 10−3 2.65 × 10−6 3 0.094 1.26 51 16.1 5.4 30.1 0.17 11.6
Glycerine 2.89 × 10−3 2.65 × 10−6 3 0.168 4.03 21 17.5 5.8 31.8 0.28 16.1

Glycerine 6.79 × 10−3 5.96 × 10−6 3 0.052 0.39 80 17.5 5.8 31.0 0.10 6.2
Glycerine 6.79 × 10−3 5.96 × 10−6 3 0.094 1.26 33 18.2 6.1 31.8 0.17 9.7
Glycerine 6.79 × 10−3 5.96 × 10−6 3 0.168 4.03 14 19.6 6.5 32.2 0.24 12.8

Glycerine 1.02 × 10−2 8.73 × 10−6 3 0.052 0.39 65 16.1 5.4 31.4 0.10 6.3
Glycerine 1.02 × 10−2 8.73 × 10−6 3 0.094 1.26 27 17.5 5.8 32.2 0.13 8.3
Glycerine 1.02 × 10−2 8.73 × 10−6 3 0.168 4.03 11 22.4 7.5 32.6 0.22 10.5

Table 1. Key parameters and resulting characteristics of the flowing layer.
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Kinematic
Density Viscosity viscosity Bagnold
(kg m−3) (Pa s) (m2 s−1) number

Air 1.184 1.85 × 10−5 1.56 × 10−5 6.95
Water 999 1.00 × 10−3 1.00 × 10−6 0.13
38% Glycerine 1094 2.89 × 10−3 2.65 × 10−6 0.04
56% Glycerine 1144 6.79 × 10−3 5.96 × 10−6 0.02
63% Glycerine 1163 1.02 × 10−2 8.73 × 10−6 0.01

Table 2. Fluid properties and Bagnold number for 3mm beads in the various interstitial
fluids at 25 ◦C.

beads much harder to image. The selection of steel beads over glass beads for the
experiments has been shown to have no impact on the shape and scaling of the velocity
profiles (Jain et al. 2002). In all experiments, the dimensionless thickness of the tumbler
was set to 3.2–3.4 times the diameter of the beads by changing the axial length t

of the tumbler to maintain similarity with respect to particle diameter. Results are
undoubtedly dependent on t . However, an order of magnitude analysis shows that the
wall effects are relatively small (Khakhar et al. 2001b). In addition, Orpe & Khakhar
(2001) in a series of extensive experiments, considered a range of cylinder lengths
and particle diameters as well as Froude numbers. Their results showed that the flow
is relatively unaffected by the sidewalls for small values of d/L. Furthermore, our
previous dry experiments with glass beads of similar sizes in the same tumbler suggest
a negligible impact of tumbler thickness on the velocity profiles (Jain et al. 2002). The
filling fraction was 50% for all the experiments, and all of the measurements were
made at the centre of the length of the flowing layer.

In all of the slurry experiments, the tumbler was completely filled with the interstitial
liquid. Most experiments were done with air or pure water as the interstitial fluid. In
addition, several experiments were performed with a mixture of water and glycerine
providing a range of densities and viscosities indicated in table 2. These viscosities
were measured using a falling ball viscometer (Gilmont Instruments) at 25 ◦C. The
density was measured using a hydrometer.

Several techniques have been used to measure the granular flow including MRI
(Nakagawa et al. 1993), X-ray imaging (Baxter et al. 1989), radioactive tracers
(Harwood 1977), and layering of granules of different colours (Takahashi, Suzuki &
Tanaka 1968). In this work, we use imaging techniques based on particle image
velocimetry (PIV) and PTV, which have provided measurements of the velocity in dry
granular flow with high spatial and temporal resolution (Warr, Jacques & Huntley
1994; Medina et al. 1998; Lueptow, Akonur & Shinbrot 2000; Bonamy et al. 2002;
Jain et al. 2002).

The clear side of the tumbler was illuminated by a dual-YAG laser system in a
back-scatter mode. The cylindrical laser beam passed through a diffuser plate to
generate a flash of light. The light reflected back from the particles in the tumbler
was recorded by a standard PIV system having a CCD camera with a resolution of
1016 × 1000 pixels. The camera’s field of view was zoomed in on the centre of the
lens shaped layer (figure 1) to capture a region about 3 cm square, corresponding to
8–20 particle diameters. The PIV system (TSI Inc.) synchronized the camera, laser
flashes and frame grabber to obtain a pair of images separated by a small time delay
(�t ∼ O(10−3) s) at a frequency of 15 Hz. PIV was used to estimate the velocity of
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Figure 2. Scatter plot of velocities a function of depth (y) at x = 0 for 3mm steel beads with
water as the interstitial fluid and at Fr = 4.03 × 10−4. (a) Streamwise velocity (u); the solid
curve is a third order polynomial fit through the data. (b) Transverse velocity (v); the solid
line is at v = 0. The dashed curves on either side of the solid curve correspond to one standard
deviation.

particles on a statistically averaged basis, followed by PTV that was used to find
the particle velocity on a particle-by-particle basis (Cowen & Monismith 1997; Jain
et al. 2002). Typically, 99 image pairs were obtained over several seconds. Since the
velocity was much higher at the surface of the flowing layer than at the interface
between the layer and the bed, two different time delays (�t) were used for each
experimental condition and the results were overlaid to provide adequate resolution
of the displacement through the entire depth of the flowing layer. We estimate the
error in the velocity measurement of a single particle to be less than 2%, based on
the spatial and temporal resolution of the PTV system.

To obtain the velocity profile in the flowing layer, the displacements of the particles
in a narrow strip about 3 particles wide in the streamwise x-direction and extending
into the fixed bed in the transverse y-direction at the centre of the drum (x = 0) were
collected from all 198 image pairs (99 image pairs at each of two delays between
images). The delay between image pairs was long enough so that the same particles
did not appear in the narrow strip for consecutive image pairs. Figure 2 shows an
example of streamwise (u) and transverse (v) velocity for 3 mm steel beads rotated at
Fr = 4.03 × 10−4, with water as the interstitial fluid. There are approximately 10 000
data points in the figure, with each data point corresponding to the velocity of an
individual bead. The velocity profiles are non-dimensionalized by the angular velocity
and radius of the tumbler and are plotted in the traditional boundary layer format
(y/L = 0 is the surface of the flowing layer). The solid curves represent the average
velocity profile and the dashed curves represent one standard deviation from the
average profile. The streamwise velocity is maximum at the surface of the flowing
layer and smoothly decreases to zero moving toward the fixed bed. The average
transverse velocity is zero, because at the centre of the layer there is no flux in the
y-direction (material neither enters nor leaves the layer). Since all of our experiments
were performed at the centre of the layer, we focus our attention on the streamwise
velocity.

Key to many of the results presented here is the accurate measurement of the
thickness of the flowing layer δ0, where the subscript indicates that the measurement
is at x =0. To determine δ0, the flowing layer was subdivided into 20 bins, so that the
average streamwise velocity in the bin nearest the fixed bed had a zero or slightly
negative value, while all other bins were positive. The method required starting with
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Figure 3. Dependence of dimensionless flowing layer thickness on (a) Froude number for
3mm steel beads and (b) bead size for Fr = 0.39 × 10−4. Symbols: �, Fr = 0.39 × 10−4; �,
Fr = 1.26 × 10−4; �, Fr = 4.03 × 10−4. Symbol fill: open, air; black, water; open with a ‘+’ in
the middle, 38% glycerine; open with a ‘×’ in the middle, 56% glycerine; and open with a
horizontal line, 63% glycerine. In some cases, data points that would overlay one another are
shifted horizontally by a small amount to make all data points visible.

an approximation for δ0 and then varying δ0 slightly to obtain a zero or negative
velocity in the last bin.

3. Results
We first consider the nature of the flowing layer in terms of its thickness, δ0, and

its dynamic angle of repose, βm, both of which are commonly measured quantities in
granular flowing layers and are characteristics of the flow. Results are indicated in
table 1. The flowing layer is only several particle diameters thick, with δ0/d ranging
from 4.9 to 12.1 over all bead diameters and interstitial fluids. For comparison, Felix,
Falk & D’ortona (2002) found 7.1 � δ0/d � 11.7 for 1–1.4 mm glass beads in air,
which is very similar to our measured layer thickness of 7.2 � δ0/d � 12.1 for 1.2mm
steel beads in our slightly larger tumbler. The dimensionless layer thickness δ0/d

increases with increasing Froude number for any particular bead size and interstitial
fluid, as indicated in table 1. If we consider only 3 mm beads, for which we have
measurements over a wide range of interstitial fluid viscosities, the flowing layer
thickness increases with Froude number, as shown in figure 3(a), consistent with
previous results (Nakagawa et al. 1993; Boateng & Barr 1997; Orpe & Khakhar
2001). What is more interesting is that the thickness of the flowing layer is essentially
independent of the interstitial fluid, even though the absolute viscosity and fluid
density vary by three orders of magnitude and the kinematic viscosity varies by a
factor of 15.6, as indicated in table 2. Similar results are evident in table 1 for smaller
bead sizes.

If the Froude number is held constant, the data in table 1 indicate that the
dimensional flowing layer thickness δ0 increases with bead size, but the dimensionless
flowing layer thickness, δ0/d , decreases with bead size, as shown in figure 3(b) for the
lowest Froude number. Again, the result is essentially independent of the interstitial
fluid. Finally, as is evident in table 1, plotting either δ0 or δ0/d versus the KW number
does not show any discernable trend. Thus, it appears that this scaling does not
adequately account for the influence of the interstitial fluid on the thickness of the
flowing layer. The reason for this may be related to the length scale. The inverse
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Figure 4. Relationship between the angle of repose and the thickness of the flowing layer
for all the 27 experimental cases. Two different relations result for dry and slurry systems, as
indicated by the least-square fits to the data. Symbols: �, Fr = 0.39 × 10−4; �, Fr = 1.26 × 10−4;
�, Fr =4.03 × 10−4. Symbol fill: open, air; black, water; open with a ‘+’ in the middle, 38%
glycerine; open with a ‘×’ in the middle, 56% glycerine; and open with a horizontal line, 63%
glycerine.

KW number, (µω3)1/2/(ρp − ρ)1/2g, can be written in a form similar to the Froude
number. In this form the resulting length scale is [µ/ω(ρp − ρ)]1/2, which is a viscous
length scale. Apparently, the kinematics related to the drum geometry (length scale
L) drive the flow rather than the viscous interactions between particles.

The dynamic angle of repose (βm) was measured by superimposing the 99 image
pairs captured for PIV and drawing a line adjacent to the topmost particles. The
results in table 1 indicate that βm varies from 24.6◦ to 35.8◦ over the entire range
of bead sizes, Froude numbers and interstitial fluids. The angle of repose increases
with increasing Froude number for any specific particle diameter and interstitial fluid
consistent with previous results (DasGupta, Khakhar & Bhatia 1991; Hill & Kakalios
1994; Dury et al. 1998; Orpe & Khakhar 2001). Orpe & Khakhar (2001) reported that
the angle of repose in air for 2 mm steel beads increases from approximately 25◦ to 40◦

for 0 � Fr � 25 × 10−4 in a 32 cm diameter tumbler. Our data for the same size beads
in air at the low end of this range of Froude numbers (0.39 × 10−4 � Fr � 4.0 × 10−4)
show consistent results (table 1), with the angle of repose increasing from 26.6◦ to
30.3◦.

For a specific Froude number and interstitial fluid, the angle of repose decreases
as the beads become larger, consistent with previous results (DasGupta et al. 1991;
Dury & Ristow 1997). The angle of repose is consistently higher for a liquid interstitial
fluid than for air as the interstitial fluid for a given particle size and Froude number,
as indicated in table 1. The angle of repose increases slightly as the viscosity increases
for liquid interstitial fluids, perhaps related to the increased hydrodynamic shear
force as one particle slides past another. The angle of repose is linearly related to
the thickness of the flowing layer, as shown in figure 4. At higher Froude numbers,
the flowing layer is more dilated and therefore thicker, leading to a higher angle of
repose (Reynolds 1885; Duran 2000). Furthermore, it is clear that the linear relation
between the angle of repose and flowing layer thickness is different for the dry system
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and the slurry system, as indicated in figure 4. Of course, particles interact via direct
contact in a dry system, but interact via a thin liquid layer when an interstitial liquid
is present. Lubrication forces play a role below some length scale related to the size
of the asperities on the surface of the particle. That the hydrodynamic lubrication
between particles in a liquid alters the angle of repose of the flowing layer is not
surprising given that the angle of repose is generally thought to be related to the
friction between particles (Duran 2000). This result differs from that for a sandpile,
where the angle of repose for dry flow and slurries was similar (Samadani & Kudrolli
2001). However, the difference may be a consequence of different flow geometries
(sandpile versus tumbler) or that the flowing layer thickness is such that there is little
difference in the angle of repose for different fluids (large δ0/d in figure 4).

An important issue for continuum dynamic simulations is a scaling law for the
velocity profile independent of the bead size, Froude number and interstitial fluid.
Two different methods have been used to scale streamwise velocity profile (Jain et al.
2002). The first method results from equating mass flow rate in the flowing layer to
the mass flow rate in the fixed bed, so that to a first approximation

uav = ωL2/2δ0, (1)

where uav is the average velocity in the flowing layer. Based on this relation, the
velocity should be scaled as uδ0/ωL2. In the second method, the streamwise velocity
profile is simply scaled using the maximum streamwise velocity usurface that occurs at
the surface of the flowing layer. Values for usurface are indicated in table 1.

The average streamwise velocity is plotted using the mass balance scaling in
figure 5(a) for 3 mm beads in air, water and glycerine–water mixtures at three different
Froude numbers (15 experimental velocity profiles). The mass balance scaling collapses
the data well, suggesting that changing the interstitial fluid leads to no significant
change in the dynamics of the flowing layer. This is particularly surprising given
the wide range of viscosity and density. The dynamic viscosity and density each
vary by three orders of magnitude, and the kinematic viscosity varies by a factor of
15.6, as indicated in table 2. Furthermore, the collapse is noteworthy considering the
broad range of Bagnold numbers for the different interstitial fluids. To determine the
Bagnold number, the characteristic shear rate was estimated as (g/d)1/2. For air,
the Bagnold number is approximately 7, while for the 63% glycerine–water mixture,
the Bagnold number is 0.013. The fact that data collapses over such a wide range of
Bagnold numbers suggests that the interaction between particles may not be properly
characterized by the Bagnold number. In a recent critical review of Bagnold’s (1954)
suspension experiments, evidence is provided that Bagnold’s results were affected by
the experimental apparatus, a short Taylor–Couette cell (Hunt et al. 2002). This recent
result together with our results that the Bagnold number does not characterize the
effect of the interstitial fluid suggest that the Bagnold number should be used with
care.

The streamwise velocity does not collapse as well for 2mm steel beads with water
and air as the interstitial fluids, as shown in figure 5(b). There is a reasonable collapse
between the velocity profiles for dry and slurry conditions in the lower half of the
layer. However, in the top half of the flowing layer, dry beads move a little faster
than the beads in water. For 1.2 mm steel beads, there are two velocity profiles, as
shown in figure 5(c), with the dry beads at the lowest Froude number falling on the
same profile as the beads in water for all Froude numbers, while the dry beads at the
higher Froude numbers fall on a different profile.
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Figure 5. Scaled streamwise velocity profile at x = 0. (a) 3 mm beads; (b) 2 mm beads;
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The velocity profiles for three different bead sizes, three rotational speeds, and
interstitial fluids ranging from air to glycerine–water mixtures (27 cases) are overlaid
in figure 6(a). The velocity profiles for the slurry systems at all Froude numbers and
for the dry system at the lowest Froude number are similar, while the velocity profiles
for the smallest beads in the dry system at the two higher Froude numbers have
substantially different profiles. Clearly, a scaling based on mass balance arguments
does not collapse the data. A similar puzzling result of different velocity profiles
for smaller beads at higher Froude numbers has been observed for dry systems of
glass beads (Jain et al. 2002). While we do not have any explanation to offer, this is
undoubtedly due to the interplay between frictional, collisional, and viscous forces.

Figure 6(b) uses the alternative scheme for the velocity profile based on normalizing
the streamwise velocity with the velocity at the top of the flowing surface, usurface.
While this is a normalization not a physically based scaling, it is useful to show the
similarity in the shape of the velocity profiles. This normalization is not unlike using
the free-stream velocity and boundary-layer thickness in plotting turbulent boundary-
layer velocity profiles. An important conclusion that can be drawn from figure 6(b)
is that the streamwise velocity profile is approximately linear for most of the flowing
layer from the top of the flowing surface to a depth of y/δ0 ∼ −0.75, as indicated by
the solid line sketched through the data. In this region the streamwise velocity can be
approximated as

u/usurface ≈ 1 + 1.2(y/δ0). (2)
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Figure 6. Streamwise velocity profile at x = 0 for 27 cases. (a) Scaling of velocity based
on mass balance arguments; (b) velocity normalized by the velocity at the surface of the
flowing layer, usurface; (c) velocity normalized by the velocity at the surface of the flowing
layer, usurface plotted on a semi-log scale. Symbols: �, Fr = 0.39 × 10−4; �, Fr =1.26 × 10−4;
�, Fr = 4.03 × 10−4. Symbol fill: open, air; black, water; open with a ‘+’ in the middle, 38%
glycerine; open with a ‘×’ in the middle, 56% glycerine; and open with a horizontal line, 63%
glycerine.

This relation is independent of the interstitial fluid. Below the linear region, the
streamwise velocity smoothly decreases to zero approaching the fixed bed.

Figure 6(c) shows the same data as in figure 6(b), except plotted using semi-log
coordinates. This provides an insight into the nature of the velocity profile near the
interface between the flowing layer and fixed bed (at y/δ0 = −1). In the cases of
both dry and slurry systems, the velocity profiles logarithmically approach zero at
the fixed bed, consistent with previous results for dry glass beads (Jain et al. 2002).
These results support the concept suggested by Komatsu et al. (2001) for flow down
a granular pile that even in the ‘fixed bed’ there exists creep flow consisting of slow
rearrangements of particles. However, our results cannot be compared directly to
those of Komatsu et al. They found an exponential decay of velocity with depth
below the flowing layer, whereas our results indicate a logarithmic dependence of
velocity on depth in the flowing layer just above the ‘fixed bed’. Of course, the precise
location of the boundary between the flowing layer and the ‘fixed bed’ is difficult
to define, particularly in light of the slow particle rearrangements in the fixed bed.
Nevertheless, our results very near the lower bound of the flowing layer are consistent
with the creep velocity suggested by Komatsu et al.
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56% glycerine; and open with a horizontal line, 63% glycerine.

The experimental shear rate γ̇0, was calculated by fitting a line to the linear portion
of each individual velocity profile. Results are shown in table 1. The shear rate ranges
from a minimum of 6.2 s−1 (for 3 mm beads in 56% glycerine–water mixture) to a
maximum of 56.1 s−1 (for 1.2 mm beads in air). The shear rate increases with an
increase in the Froude number for any bead diameter and interstitial fluid, as would
be expected. However, for any fixed Froude number and interstitial fluid, the shear
rate decreases as the bead diameter increases. This is a direct result of the decrease in
the surface velocity and the increase in the thickness of the flowing layer (δ0) as the
bead size increases. For 1.2 mm and 2mm beads, the shear rate is higher for the dry
case than for the slurry case. However, the opposite is true for 3mm beads, primarily
because the surface velocity is greater in the slurry than for dry beads.

Khakhar et al. (2001a) predicted that the shear rate should be given by:

γ̇theor ≈
[
g

d

sin(βm − βs)

cos βs

]1/2

, (3)

where, βs is the static angle of repose. At the end of every experimental run, the
motor was turned off and a digital picture was taken for measurement of βs . The
procedure to measure βs was similar to that for measuring dynamic angle of repose
(βm). Figure 7(a) compares the experimentally-measured shear rate for all bead sizes,
Froude numbers, and interstitial fluids with the theoretical shear rate. The relationship
between the theoretical estimate of the shear rate and the measured shear rate holds
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regardless of the interstitial fluid properties. For this data set, the exact relation is

.
γ = 2.1

[
g sin(βm − βs)

d cos βs

]1/2

− 26. (4)

Khakhar et al. (2001a) also showed that the shear rate can be used to estimate the
thickness of the flowing layer. Since the velocity profile is approximately linear, the
shear rate can be approximated as:

γ̇ ≈ 2uav/δ0, (5)

which together with (1) leads to:

δ0/L = (ω/γ̇ )1/2. (6)

Combining the expression for shear rate (equation (3)) with (6) leads to a theoretical
value for the flowing layer thickness that is based on the particle diameter, angular
velocity, radius of the tumbler and angle of repose.

δ0

L

∣∣∣∣
theor

≈
(

ω2d

g

)1/4[
sin(βm − βs)

cos βs

]−1/4

. (7)

The measured layer thickness is clearly related to this theoretical value as shown in
figure 7(b). In some sense, this figure is just the data in figure 4 replotted in a different
format. However, the dashed line indicating the least-squares fit for all the data, shows
that this simple theoretical prediction is accurate to within a multiplicative factor of
O(1), independent of the interstitial fluid, Froude number, or bead size. Considering
only a single Froude number (e.g. just the circular symbols) a slightly different linear
relation between the measured and theoretical values results, as indicated by the
nearly parallel solid lines in figure 7(b). This suggests that while the prediction of
(7) works fairly well, there is some dependence on the Froude number. However, the
relation appears independent of the interstitial fluid.

The success in normalizing the velocity profiles for different bead sizes, Froude
numbers, and interstitial fluids with the velocity at the surface of the flowing layer
(usurface) as shown in figure 6(b) suggests that the surface velocity is a key parameter
of the flow. From table 1, we note that the surface velocity varies from 0.10 m s−1

to 0.77 m s−1 and increases with Froude number for all cases. The surface velocity
decreases as the particles increase in size at a given Froude number. For small beads
(1.2 mm and 2 mm), the surface velocity is higher for dry flow than for a water slurry,
but the converse is true for large beads. The surface velocity is not strongly dependent
on the interstitial fluid for the 3 mm beads.

The velocity at the surface of the layer can be estimated based on the shear rate.
Assuming a simple linear velocity profile as a first-order approximation,

usurface ≈ γ̇ δ̇0. (8)

The theoretical relations for γ̇ (equation (3)) and δ0 (equation (7)) can be combined
to predict the surface velocity as:

usurface

ωL

∣∣∣∣
theor

≈
(

L

d

)1/4

Fr−1/4

[
sin(βm − βs)

cos βs

]1/4

. (9)

Figure 7(c) suggests that the experimentally measured surface velocity approximately
follows the scaling suggested by (9) for each Froude number. Again, the solid lines in
figure 7(c) correspond to a least-squares fit for the data at each Froude number. Once



Effect of interstitial fluid on a granular flowing layer 37

0 2 4 6 8 10

0.1

0.2

0.3

.

Air

γ

Glycerine
63%

µ (10–3 Pa s)

(a)

0 5 10 15

0.1

0.2

0.3

Water Air

(b)

ν (10–6 m2  s–1 )

(g/d) 21
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Fr = 4.03 × 10−4.

again, the data for each Froude number seem to fall on three nearly parallel lines,
and the results are independent of the interstitial fluid at any given Froude number.
However, it is also clear that the data does not collapse independent of the Froude
number.

At this point, it is reasonable to consider more directly the effect of the interstitial
fluid viscosity on the flow. To do this, we consider the shear rate in the flowing layer,
since it is characteristic of the velocity profile, and it varies by nearly an order of
magnitude, as indicated in table 1. In figure 8, we plot the shear rate as a function of
both the dynamic viscosity, which reflects viscous friction effects, and the kinematic
viscosity, which accounts for buoyancy effects in addition to viscous friction. It is
apparent, based on purely dimensional arguments, that the dimensionless shear rate
cannot be an explicit function of either the dynamic viscosity or the kinematic
viscosity. However, this figure is included to indicate that the dynamics of the flowing
granular layer are relatively independent of the interstitial fluid; the shear rate changes
a surprisingly small amount over the wide range of interstitial fluid viscosities.

The number density profile of particles in the flowing layer is important for complete
understanding of the flowing layer as well as for simulations and models of granular
flow. Previous measurements in dry slurries indicate that the number density is near
its maximum in the half of the layer near the fixed bed and drops off in the half of the
layer nearest to the flowing surface (Ristow 1996; Jain et al. 2002). PIV images of the
bead positions were used to determine the bead number density profile in the flowing
layer. A rectangular window of length ∼2.4 cm (0.17L or 800 pixels) perpendicular to
the flowing surface and width 1 cm (350 pixels) along the flowing surface was used for
the number density calculation. This window was divided into 20 bins perpendicular
to the flowing surface, and the number of particles present in each bin was summed
for the 99 image pairs.

The number density profiles for both the dry condition and the slurry condition
are shown in figure 9(a). The data fall onto three distinct profiles, one for each
bead size, for all interstitial fluids (air, water, and glycerine–water mixtures) and
Froude numbers. For each of the larger beads, 2 mm and 3 mm in diameter, the
number density profiles for different Froude numbers and interstitial fluids collapse,
suggesting that number density profiles are dependent only on the bead size. For
1.2 mm beads, the number density profiles are independent of the Froude number,
but the number density in the top half of the flowing layer is lower for the dry system
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Figure 9. (a) Total number of beads counted in each bin as a function of depth in the
flowing layer at x = 0. (b) Normalized number density profiles. Symbols: �, Fr =0.39 × 10−4;
�, Fr = 1.26 × 10−4; �, Fr = 4.03 × 10−4. Symbol fill: open, air; black, water; open with a ‘+’
in the middle, 38% glycerine; open with a ‘×’ in the middle, 56% glycerine; and open with a
horizontal line, 63% glycerine.

than the number density in the corresponding region for the slurry system. This result
may be related to the significantly higher surface velocity and shear rate for the
1.2 mm dry system compared to the slurry system, shown in figure 5(c). However, this
higher surface velocity and shear only occur for the higher Froude numbers, while
the lower Froude number dry system is similar to the slurry system in figure 5(c).
This is different from the number density results in figure 9(a), where the dry system
and slurry system each fall onto a different curve at all Froude numbers.

The profiles shown in figure 9(a) were calculated by simply counting the particles
in bins distributed in the transverse direction from the flowing surface to the fixed
bed. The number of beads of diameter d that could fit in a bin of area A if the
flow is strictly two-dimensional is Ntheory = A/d2 for square packing. Although the
granular flow is only quasi-two-dimensional, this theoretical value is useful to scale
the number of beads as shown in figure 9(b) for all bead sizes, Froude numbers, and
interstitial fluids. While the collapse is imperfect, it is clear that number density is
near its maximum in the lower half of the flowing layer and drops off substantially in
the top half of the layer approaching the surface of the flowing layer. The maximum
number density in the lower half of the flowing layer and the fixed bead appears to
be Nmax ≈ 0.6 Ntheory independent of the interstitial fluid, which is slightly less than the
value for glass beads in air (Jain et al. 2002).

The particle flux profile in the flowing layer can be obtained from the product
of the velocity and the number density, as shown in figure 10. The mass flux is
smallest at the top of the layer because of lower number density and near the fixed
bed because of the low streamwise velocity. The mass flux is greatest for both dry
and wet beads at about y/δ0 = −0.4, although the depth of the maximum varies
from y/δ0 = −0.2 to y/δ0 = −0.5. Furthermore, the percentage of the average mass
flux between −0.25 � y/δ0 � 0, −0.75 � y/δ0 � −0.25 and −1 � y/δ0 � −0.75 are 28%
(±7%), 65% (±5%) and 8% (±3%), respectively (the percentages in the parentheses
indicate one standard deviation in the measured mass flux). Thus, the bulk of the
mass flow occurs in the middle portion of the flowing layer. Similar to our observation
for the case of streamwise velocity profiles and number density profiles, most of the
mass flux profiles corresponding to different bead diameters, Froude numbers, and
interstitial fluids collapse on top of each other. The exception is the data for 1.2 mm
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Figure 11. Probability density function (PDF) of the streamwise and transverse velocities for
2mm steel beads near the top of the flowing layer (−0.2 � y/δ0 � 0) with air and water as the
interstitial fluid. Symbols: white bars, air; black bars, water. The solid curve is a Gaussian
distribution.

beads in air, which is related to the higher surface velocity and shear rate, as noted
earlier.

One key difference between granular materials and fluids is that granular materials
do not exhibit intrinsic thermal motion. Instead, velocity fluctuations, also known
as the granular temperature, are generated by the flow itself (Menon & Durian
1997; Losert et al. 2000). As a result, the flow and velocity fluctuations are related.
Of interest here is the effect of the interstitial fluid on the granular temperature.
Figure 11 shows the probability density function (PDF) of the streamwise velocity
and the transverse velocity near the surface of the flowing layer (−0.2 � y/δ0 � 0)
for 2 mm beads at Fr =4.03 × 10−4 with air and water as the interstitial fluid. The
continuous curve represents a Gaussian distribution.

While there are some differences, the probability density function for both the
streamwise and transverse velocities are similar for the two interstitial fluids. In
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velocity, u(y) is plotted against the dimensionless streamwise velocity. Symbols: �, Fr =
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both cases, the distributions are essentially Gaussian. This is somewhat different
from results for energetically vibrated systems in which the Gaussian distribution
underestimates the probability of high and low velocity (Losert et al. 1999; Rouyer
& Menon 2000). The streamwise and transverse probability density functions differ
from each other in that the distribution of streamwise velocity is broader than
that for the transverse velocity. This is simply a consequence of the streamwise
velocity fluctuations being larger than the transverse velocity fluctuations. The ratio
of transverse temperature to streamwise temperature for all experiments involving
different bead sizes, Froude numbers, and interstitial fluids ranged from 0.56 to 0.68
across the flowing layer, with the smallest values in the middle of the layer.

To calculate the granular temperature through the flowing layer, the layer was
divided into 10 bins along the transverse direction. For each of these 10 bins the
granular temperature was calculated as (Hermann 1993; Goldhirsch 2003):

T = (〈u2〉 − 〈u〉2), (10)

where, u is the two-component velocity vector (streamwise and transverse velocities)
and the angled brackets indicate a time average. The time between images of an
image pair (∼10−3 s) was less than the estimate for the time scale of particle collisions
(d/u ∼ 10−2 s), so it is unlikely that the measured temperature was affected by multiple
particle collisions taking place in the interval between the images. Figure 12 compares
the granular temperature profiles for all bead sizes when the interstitial fluid is air,
water, or mixtures of glycerine and water. In this figure, the square root of granular
temperature normalized by local streamwise velocity is plotted against the normalized
local streamwise velocity. A power-law relation between granular temperature and
local streamwise velocity results, as indicated by the solid curve described by:

√
T (y)

u(y)
= 0.38

(
u(y)

usurface

)−0.68

. (11)
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Based on this result, the granular temperature is 38% of the maximum streamwise
velocity near the surface of the flowing layer. This is higher than the 8% or 2–4%
values found previously by using MRI and optical probes, respectively (Boateng &
Barr 1997; Caprihan & Seymour 2000), but consistent with our previous results for
glass beads in air (Jain et al. 2002). Of course, the granular temperature is higher near
the flowing surface (where the particle concentration is lower) and smaller near the
fixed bed (where the particle concentration is greater), consistent with intuition and
previous results (Walton & Braun 1986; Campbell 1990). Deep in the flowing layer at
small values of u(y)/usurface, the velocity fluctuations are quite small – about one-tenth
of the free-stream velocity. However, this is a significantly larger fraction of the local
streamwise velocity than near the flowing surface, at large values of u(y)/usurface. The
collapse of the data in figure 12 indicates that there is no significant dependence of
granular temperature on the viscosity of the interstitial fluid or the diameter of beads
over a wide range of Froude numbers when the granular temperature is normalized
with the local streamwise velocity.

4. Conclusions
Knowledge of flow dynamics in the flowing layer of a quasi-two-dimensional

geometry is helpful for the understanding of three-dimensional granular systems,
scale-up studies (Ottino & Khakhar 2002), and for mixing and segregation models.
In this work, we have explored the effect of interstitial fluid on the dynamics of the
flowing layer in a quasi-two-dimensional rotating drum.

First, consider the results obtained. Our results show interesting differences (and
similarities) in granular dynamics between the dry and slurry cases. The angle of
repose and the flowing layer thickness are smaller in the dry system than in the slurry
system for the same bead diameter at the same Froude number. The shear rate and
surface velocity are greater in the dry system than the slurry system for the same bead
diameter at the same Froude number. These differences are more pronounced for the
beads of smaller sizes. Regardless, both systems follow similar scaling relations: (i)
shear rate is inversely related to the square root of particle size; (ii) layer thickness
increases with the square root of angular velocity and increases with the quarter
power of the particle size; and (iii) surface velocity is related to (L/d)1/4Fr−1/4.

Two different scaling techniques were used to scale the streamwise velocity profiles.
Scaling based on the mass balance works well for bigger beads, but for smaller
beads the velocity profiles differ for the slurry system and the dry system. However,
normalizing the streamwise velocity with the maximum velocity at the top of the
flowing layer collapses the velocity profiles for bead sizes from 1.2 mm to 3 mm, Froude
numbers from 0.39 × 10−4 to 4.0 × 10−4, interstitial fluid densities from 1.184 kg m−3 to
1163 kgm−3, and interstitial fluid viscosities from 0.018 × 10−3 Pa s to 10.2×10−3Pa s.
The streamwise velocity profile is nearly linear in the upper three-quarters of the
flowing layer (y/δ0 > −0.75) and the scaled streamwise velocity is approximately
equal to 1 + 1.2(y/δ0). Near the interface between the layer and the fixed bed, the
streamwise velocity logarithmically decreases to zero.

The number density profiles scaled using geometric arguments result in a reasonable
collapse for different bead sizes, Froude numbers, and fluid properties. The number
density changes dramatically in the upper half of the flowing layer, but remains nearly
constant in the lower half of the flowing layer. A non-dimensionalization scheme
based on a maximum packing density works well for 3 mm and 2 mm beads, but for
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1.2 mm beads the number density in the top half of the layer is greater in the slurry
case compared to the dry counterpart. Combining the streamwise velocity profiles
with the number density profiles provides profiles of the mass flux. The maximum
mass flux occurs at about 40% of the depth from the top surface to the fixed
bed.

The magnitude of the velocity fluctuations decreases with depth in the flowing
layer. Near the surface of the flowing layer, the fluctuations can be as large as 38%
of the maximum streamwise velocity. The fluctuations decrease to less than one-tenth
of the surface velocity near the fixed bed, but the fluctuations are much larger than
the local streamwise velocity. The distribution of the transverse velocity fluctuations
is similar in nature to that for the streamwise velocity fluctuations, although the r.m.s.
value of transverse velocity fluctuations is about two-thirds that of the streamwise
velocity fluctuations.

Of course, these measurements were made in a quasi-two-dimensional drum. In
fact, the issue of selecting the axial dimension of the tumbler is a balancing act – if
the gap is too wide, three-dimensional effects may play a role. While we expect that
the effect of the sidewalls on the flow is not substantial, as described earlier, caution
must be used in extending these results to three-dimensional systems. Nevertheless,
we can make a few general observations. It is somewhat surprising that the scaling for
the shear rate works well in the slurry case, because the reasoning behind equation (3)
was built upon ideas of dry friction. It is known that adding a little liquid to a
granular material produces substantial changes in its behaviour (Samadani & Kudrolli
2001; Li & McCarthy 2003; Tegzes et al. 2003). However, it is unexpected that if
the particles are completely submerged in a liquid, the granular flow is very similar
to that of dry granular materials. The results in this paper show that the physics
may be similar. The similarities in behaviour between dry materials and slurries are
due to the basis for the scaling relation, equation (3). The characteristic shear rate
is essentially obtained by taking the characteristic length to be the particle diameter
and the characteristic acceleration to be the net acceleration of particles (acceleration
due to gravity minus the frictional force per unit mass). Since the correlation works,
this suggests that there may be an effective coefficient of friction even in the case of
slurries. It is not surprising, however, that the scaling is not as good for the layer
thickness and the surface velocity because (i) the free surface and the bed-flowing
layer boundary are both diffuse and thus there is some subjective element in their
determination; and (ii) the velocity profile has a linear portion and a logarithmic
portion, the relative sizes of which vary depending on the parameters; the scaling,
however, is valid only for the linear part.

Although the results presented here are limited to a quasi-two-dimensional system
with the accompanying limitations, they suggest that there may be deep commonalities
in the physics of flowing granular materials and suspensions. Further exploration of
the theoretical foundations and further experimentation may be highly profitable to
both domains. In addition, it may be worth revisiting the original Bagnold experiments
for liquid–solid suspension flows and how they can be applied to granular flows, as
suggested by Hunt et al. (2002).
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